Abstract

In this work, an electrochemiluminescence (ECL) biosensor was fabricated for the selective detection of vascular endothelial growth factor (VEGF165). g-C3N4/PDDA/CdSe nanocomposites were used as the ECL substrate. Then, DNA labeled at the 5' end with amino groups (DNA1) was immobilized on the surface of g-C3N4/PDDA/CdSe nanocomposite-modified glassy carbon electrode (GCE) by amido linkage. AuNP-labeled target DNA (Au-DNA2) could hybridize with DNA1 to form a double strand. The ECL of the g-C3N4/PDDA/CdSe nanocomposite was efficiently quenched due to the resonance energy transfer between CdSe QDs and Au NPs. After VEGF165 was recognized and bound by Au-DNA2, the double helix was disrupted, and the energy transfer was broken. In this case, Au-DNA2 was released from the electrode surface, and the ECL intensity recovered to a higher level. Under optimal conditions, this ECL biosensor possesses excellent selectivity, accuracy, and stability for VEGF165 detection in a linear range of 2pgmL-1 to 2ngmL-1 with a detection limit of 0.68pgmL-1. In addition, this assay has been successfully applied to the determination of VEGF165 in serum samples. Graphical abstract Schematic representation of the electrochemiluminescence sensor based on a g-C3N4/PDDA/CdSe nanocomposite, which can be determined in the concentration of vascular endothelial growth factor in serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call