Abstract

A simple and highly sensitive electrochemical DNA methyltransferase (MTase) activity assay is presented in this report. The assay employs the electrocatalytic oxidation of ascorbic acid (AA) by a threading intercalator (N,N'-bis(3-propylimidazole)-1,4,5,8-naphthalene diimide (PIND) functionalized with electrocatalytic redox Os(bpy)2Cl(+) moieties (PIND-Os)). Briefly, a double-stranded DNA (ds-DNA) containing the symmetric sequence of 5'-CCGG-3' is first immobilized on a gold electrode. The electrode is then incubated with M.SssI CpG methyltransferase (M.SssI MTase) which catalyzes the methylation of the specific CpG dinucleotides, and the electrode is subsequently treated with a restriction endonuclease HpaII which recognizes the 5'-CCGG-3' sequence. Once the CpG site in the 5'-CCGG-3' is methylated, HpaII recognition is blocked. Higher M.SssI MTase activity leads to more CpG sites being methylated and consequently impedes more the restriction endonuclease HpaII digestion process. Thus, a larger amount of ds-DNA remains on the electrode surface after the HpaII treatment. Thereafter, the electrode is incubated with PIND-Os during which PIND-Os specifically inserts itself between base pairs of ds-DNA and catalyzes the electrooxidation of AA. The methylation event corresponding to the MTase activity can therefore be monitored and amplified by the electrocatalytic oxidation of AA. A linear correlation between the catalytic oxidation current of AA and the activity of M.SssI MTase ranged from 0 to 120 U/mL with a current sensitivity of 0.046 μA mL U(-1) is obtained. The inhibitor screening ability of the developed MTase activity assay is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.