Abstract

A sensitive electrochemical sensor was proposed via combining molecular imprinting technique with the graphene material-doped titanium nitride. The novel graphene with 3-dimensional structure displayed more binding sites and better electrochemical properties. Moreover, this study focused on coating pyrrole with electrical conductivity on the surface of silica as a monomer, and BPA as the template. The interaction made specific detection possible, between monomer and template. With a series of characterizations and electrochemical measurements, CPE (carbon paste electrode)-contained TiN-rGO composite was proved to have conductivity improved. Also, the modified polymer performed well selectivity which reflected in that it was almost impervious to distractions. Under optimized conditions, a linear dependence was observed from 0.5 to 100nmolL-1 with a detection limit of 0.19nmolL-1. The sensor explicated outstanding repeatability via repetitive experiment with the RSD of 0.02%, while the results of stability experiment reached the RSD of 1.90%. Eventually, it was used to analyze BPA residues in 3 kinds of daily supplies. The results indicated the potential of the sensor in environmental detection prospectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.