Abstract

In this work, a brief electrochemical aptasensor was developed for highly sensitive detection of SARS-CoV-2 antigen utilizing an aptamer-binding induced multiple hairpin assembly strategy for signal amplification. In the presence of SARS-CoV-2, a pair of aptamers was brought in a close proximity according to the aptamer-protein antigen binding, which initiated strand displacement reaction thereby triggering a multiple hairpin assembly to obtain long linear DNA concatemers on the electrode surface. As the fabricated hairpin probes were labeled with biotin, massive streptavidin-alkaline phosphatases (ST-ALP) could be further introduced on the electrode interface via biotin-streptavidin interaction thus generating strong electrochemical signal in electrolyte solution containing 1-naphthol phosphate. Benefiting from the non-enzymatic multiple hairpin assembly signal amplification strategy, the designed aptasensor for SARS-CoV-2 spike protein detection exhibited the wide linear range from 50 fg·mL−1 to 50 ng·mL−1 and low detection limit of 9.79 fg·mL−1. Meaningfully, this proposed electrochemical assay provided a potential application for the point of care analysis of viral diseases under ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call