Abstract

A strategy to achieve high sensitivity of noncontact optical thermometer via the structure design of nanoglass-ceramic and the usage of Ln(3+) (Ln = Eu, Tb, Dy) luminescence as reference signal and Cr(3+) emission as temperature signal was provided. Specifically, the synthesized dual-phase glass-ceramics were evidenced to enable spatially confined doping of Ln(3+) in the hexagonal GdF3 nanocrystals and Cr(3+) in the cubic Ga2O3 nanoparticles, being beneficial to suppressing detrimental energy transfer between Ln(3+) and Cr(3+) and thus significantly enhancing their luminescence. As a consequence, completely different temperature-sensitive luminescence of Ln(3+)4f → 4f transition and Cr(3+) 3d → 3d transition in the present glass-ceramic resulted in obvious variation of Cr(3+)/Ln(3+) fluorescence intensity ratio with temperature and strikingly high detecting temperature sensitivity of 15-22% per K. We believe that this preliminary study will provide an important advance in exploring other innovative optical thermometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.