Abstract

A series of different facile modification layers (MLs) was designed to gradually increase the electrochemical sensing performance of glassy carbon electrode (GCE) for simultaneously detecting Pb2+ and Cu2+. ML designs were mainly a different combination of ZIF-67, MWCNT and Nafion, and their different electrochemical sensing performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), square wave stripping voltammetry (SWSV) and chronocoulometry. The fabricated sensor, which modified with ZIF-67/MWCNT and Nafion layer, exhibited the biggest response peak current to Pb2+ and Cu2+. In addition, it displayed a wide linear detection range of 1.38 nM–5 μM for Pb2+ and 1.26 nM–5 μM for Cu2+, a detection accuracy of about 1 nM for both Pb2+ and Cu2+, and an excellent stability for both Pb2+ and Cu2+. We also analyzed the real water sample taken from Changchun’s Sanjia Lake and Yan Lake. We believe this ML design provides instruction for building high-performance electrochemical sensing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call