Abstract

Papillary thyroid carcinoma (PTC) is the most common thyroid cancer with high incidence in endocrine tumors, which emphasizes the significance of accurate diagnostics. Still, the commonly used cytological method (fine-needle aspiration (FNA) cytology) and molecular diagnostic methods (such as PCR and sequencing) are limited in terms of diagnostic time, sensitivity, and user-friendliness. In this study, we introduce a novel Zip recombinase polymerase amplification (Z-RPA) strategy to efficiently detect rare mutant alleles in PTC fine-needle aspiration samples, which is sensitive, fast, and simple to manipulate. Using Zip nucleic acid (ZNA) probes to clamp the mutation region, the phi 29 polymerase could selectively displace mismatched ZNA probes and start amplification, while leaving complementary ZNA probes untouched and blocking amplification according to genotype. We demonstrated the good sensitivity and specificity of this strategy with optimized conditions and design, which enabled detection of BRAF V600E mutation in a total 4 ng of genomic DNA within 40 min (≈1 copy). Robust behavior in clinical specimen analysis was also demonstrated. The Z-RPA strategy provides a pragmatic approach to rapidly, sensitively, and easily detect BRAF V600E mutation in clinical fine-needle aspiration samples, which is a promising method for early cancer diagnosis and treatment guideline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call