Abstract
The effective detection of low-concentrated molecules in small volumes represents a significant challenge in many sectors such as biomedicine, safety, and pollution. Here, we show an easy way to dispense liquid droplets from few μl volume (0.2-0.5 μl) of a mother drop, used as reservoir, by using a pyro-electrohydro-dynamic jetting (p-jet) dispenser. This system is proposed for multi-purpose applications such as printing viscous fluids and as a biosensor system. The p-jet system is based on the pyroelectric effect of polar dielectric crystals such as lithium niobate (LN). The electric field generated by the pyroelectric effect acts electro-hydrodynamically on the sample of liquid, allowing the deposition of small volumes. The p-jet approach allows to obtain the dispensing of drops of very small volumes (up to tenths of a picoliter) avoiding the use of syringes and nozzles generally used in standard technologies. The reliability of the technique as a biosensor is demonstrated both in the case of oligonucleotides and in a sample of clinical interest, namely gliadin. The results show the possibility of detecting these biomolecules even when they are low abundant, i.e. down to attomolar. The results show a marked improvement in the detection limit (LOD) when compared with the conventional technique (ELISA). Moreover, it has been presented the possibility of using the p-jet as a useful tool in the detection of biomarkers, present in the blood but currently not detectable with conventional techniques and related to neurodegenerative diseases such as Alzheimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.