Abstract

It is extremely necessary to detect Hydrogen sulfide (H2S) due to the hazardous nature. Thus, it is required to design a material which can detect H2S gas at low temperature. In this work, ZnCo2O4 microtubes are prepared by using absorbent cotton as template, combining immersion method in metal salt solution (Zn:Co=1:2) with calcination treatment in air. The influence of calcination temperature on the particle size and sensing property was also discussed. The diameter of particles on the ZnCo2O4 microtubes increases with increasing calcination temperature. The hollow microtubes of ZnCo2O4 materials calcined at 600 °C (ZCO-600) exhibit superb sensing performance to H2S at 90 °C with the lowest detection limit of 50 ppb. The optimum operating temperature (90 °C) was lower than the other reported ZnCo2O4 sensors. ZCO-600 sensor also shows excellent selectivity, repeatability, stability, humidity resistance and the good linear relationship in ppb and ppm level H2S. In addition, the feasible sensing mechanism of ZCO-600 to H2S is explored on the basis of XPS analysis. Thus, ZnCo2O4 as a sensing material possesses widespread application prospects for the detection of trace H2S gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.