Abstract

We report the experimental results of coherent detection of narrow-linewidth nanosecond terahertz radiation at room temperature using frequency conversion in a nonlinear MgO:LiNbO3 crystal. Mixing the terahertz radiation with a near-infrared intense pump pulse results in the excitation and amplification of the difference-frequency component, which is detected with an InGaAs-based photodiode. We demonstrate this method in a fast and very sensitive terahertz wave detector. The detector is capable of capturing the temporal profile of terahertz pulses with nanosecond resolution, and is at least one order more sensitive than a typical liquid-He-cooled Si bolometer for detecting nanosecond pulsed terahertz wave beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.