Abstract

As the most important characteristic gas, carbon monoxide (CO) can be used for early detection of coal spontaneous combustion in mine goafs. Conventional gas analysis system for coal mine combustion monitoring is chromatography- based gas tubing bundles system, which suffers from long time delay. In this report, a sensitive and stable CO monitoring system was developed by using a distributed feedback (DFB) laser operating at 2.33 μm and a Herriott-type multi-pass gas cell with a 20-m optical length, taking advantage of the in-situ monitoring, excellent accuracy and simple structure available from direct absorption spectroscopy. The detection accuracy of system was about ±0. 2 ppm when as low as 1 ppm CO gas was detected. And data monitored can be used to determine that the detection limit of system was about 0.2 ppm. Further, a long-term continuous monitoring evaluation has clearly demonstrated the long-term stability and reliability of the monitoring system. The results obtained have validated the potential use of such a CO monitoring system in a practical monitoring application, such as the coal spontaneous combustion monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.