Abstract

Polarization-sensitive photodetectors based on two-dimensional anisotropic materials still encounter the issues of narrow spectral coverage and low polarization sensitivity. To address these obstacles, anisotropic As0.6P0.4 with a narrow band gap has been integrated with WSe2 to construct a type-II heterostructure, realizing a high-performance polarization-sensitive photodetector with broad spectral range from 405 to 2200 nm. By operating in photovoltaic mode at zero bias, the device shows a very low dark current of ∼0.02 picoampere, high responsivity of 492 m A/W, and high photoswitching ratio of 6 × 104, yielding a high specific detectivity of 1.4 × 1012 Jones. The strong in-plane anisotropy of As0.6P0.4 endows the device with a capability of polarization-sensitive detection with a high polarization ratio of 6.85 under a bias voltage. As an image sensor and signal receiver, the device shows great potential in imaging and optical communication applications. This work develops an anisotropic vdW heterojunction to realize polarization-sensitive photodetectors with wide spectral coverage, fast response, and high sensitivity, providing a new candidate for potential applications of polarization-resolved electronics and photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.