Abstract

Artificial visual systems with image sensing and storage functions have considerable potential in the field of artificial intelligence. Light-stimulated synaptic devices can be applied for neuromorphic computing to build artificial visual systems. Here, optoelectronic synaptic transistors based on 5,15-(2-hydroxyphenyl)-10,20-(4-nitrophenyl)porphyrin (TPP) and dinaphtho[2,3-b:2',3'-f ]thieno[3,2-b]thiophene (DNTT) are demonstrated. By utilizing stable TPP with high light absorption, the number of photogenerated carriers in the transport layer can be increased significantly. The devices exhibit high photosensitivity and tunable synaptic plasticity. The synaptic weight can be effectively modulated by the intensity, width, and wavelength of the light signals. Due to the high light absorption of TPP, an ultrasensitive artificial visual array based on these devices is developed, which can detect weak light signals as low as 1 µW cm-2 . Low-voltage operation is further demonstrated. Even with applied voltages as low as -70 µV, the devices can still show obvious responses, leading to an ultralow energy consumption of 1.4 fJ. The devices successfully demonstrate image sensing and storage functions, which can accurately identify visual information. In addition, the devices can preprocess information and achieve noise reduction. The excellent synaptic behavior of the TPP-based electronics suggests their good potential in the development of new intelligent visual systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call