Abstract

Wearable pressure sensors capable of sensitive, precise, and continuous measurement of physiological and physical signals have great potential for the monitoring of health status and the early diagnosis of diseases. This work introduces a 3D-printed rigid microbump-integrated liquid metal-based soft pressure sensor (3D-BLiPS) for wearable and health-monitoring applications. Using a 3D-printed master mold based on multimaterial fused deposition modeling, the fabrication of a liquid metal microchannel and the integration of a rigid microbump array above the microchannel are achieved in a one-step, direct process. The microbump array enhances the sensitivity of the pressure sensor (0.158 kPa-1 ) by locally concentrating the deformation of the microchannel with negligible hysteresis and a stable signal response under cyclic loading. The 3D-BLiPS also demonstrates excellent robustness to 10 000 cycles of multidirectional stretching/bending, changes in temperature, and immersion in water. Finally, these characteristics are suitable for a wide range of applications in health monitoring systems, including a wristband for the continuous monitoring of the epidermal pulse rate for cuffless blood pressure estimation and a wireless wearable device for the monitoring of body pressure using a multiple pressure sensor array for the prevention of pressure ulcers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.