Abstract
The multiple-metal-nanoparticle tagging strategy has generally been applied to the multiplexed detection of multiple analytes of interest such as microRNAs (miRNAs). Herein, it was used for the first time to improve both the specificity and sensitivity of a novel mass spectroscopic platform for miRNA detection. The mass spectroscopic platform was developed through the integration of the ligation reaction, hybridization chain reaction amplification, multiple-metal-nanoparticle tagging, and inductively coupled plasma mass spectrometry. The high specificity resulted from the adoption of the ligation reaction is further enhanced by the multiple-metal-nanoparticle tagging strategy. The combination of hybridization chain reaction amplification and metal nanoparticle tagging endows the proposed platform with the feature of high sensitivity. The proposed mass spectrometric platform achieved quite satisfactory quantitative results for Let-7a in real-world cell line samples with accuracy comparable to that of the real-time quantitative reverse-transcriptase polymerase chain reaction method. Its limit of detection and limit of quantification for Let-7a were experimentally determined to be about 0.5 and 10 fM, respectively. Furthermore, due to the unique way of utilizing the multiple-metal-nanoparticle tagging strategy, the proposed platform can unambiguously discriminate between the target miRNA and nontarget ones with single-nucleotide polymorphisms based on their response patterns defined by the relative mass spectral intensities among the multiple tagged metal elements and can also provide location information of the mismatched bases. Its unique advantages over conventional miRNA detection methods make the proposed platform a promising and alternative tool in the fields of clinical diagnosis and biomedical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.