Abstract

We present a new "off-on" fluorescence probe for detecting hypochlorite (ClO-) based on silicon quantum dots coupled with silver nanoparticles (SiQDs/AgNPs) as nanocomplexes. Via introducing N-[3-(trimethoxysilyl)propyl]ethylenediamine and catechol as initial reactants, silicon quantum dots (SiQDs) with excellent properties were synthesized through a simple hydrothermal method. Transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of quantum dots. The fluorescence of SiQDs could be quenched by the silver nanoparticles (AgNPs) by surface plasmon-enhanced energy transfer (SPEET) from SiQDs (donor) to AgNPs (acceptor). The AgNPs could be etched by adding ClO-, thus freeing the SiQDs from the AgNP surfaces and restoring the SiQDs' fluorescence. The sensing system exhibits many advantages, such as wide linear response range, high sensitivity, and excellent selectivity. Under optimized conditions, wide linear ranges (from 0.1 to 100.0μM) and low detection limits (0.08μM) were obtained for ClO-. Graphical Abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.