Abstract

A highly sensitive and selective amperometric hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) at multiwalled carbon nanotubes–zinc oxide (MWCNT/ZnO) composite modified glassy carbon electrode (GCE) is reported. ZnO microsponges were electrochemically grown on MWCNT surface by the simple, cost-effective, green, electrochemical method at room temperature. The MWCNT/ZnO/Hb composite film showed a pair of well-defined, quasi-reversible redox peaks with a formal potential (E°′) of −0.336V, characteristic features of heme redox couple of Hb. The electron transfer rate constant (ks) of immobilized Hb was 1.26s−1. The developed biosensor showed a very fast response (>2s) toward H2O2 with good sensitivity, wide linear range, and low detection limit of 0.02μM. The fabricated biosensor showed interesting features, including high selectivity, acceptable stability, good reproducibility, and repeatability along with excellent conductivity, facile electron mobility of MWCNT, and good biocompatibility of ZnO. The fabrication method of this biosensor is simple and effective for determination of H2O2 in real samples with quick response, good sensitivity, high selectivity, and acceptable recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.