Abstract
Electrochemical methods have attracted considerable attention for developing cytosensing system since they can decrease the cost and time requirement for cell detection with simple instrumentation. Herein, a label-free electrochemical cytosensor with surface-confined ferrocene as signal indicator was developed for highly sensitive and selective detection of cancer cell. With layer-by-layer (LBL) self-assembly technique, positively charged poly(ethylene imine) functionalized with ferrocene (Fc-PEI) and negatively charged single-wall carbon nanotubes (SWNTs) were alternately assembled on 3-mercaptopropionic acid (MPA) modified gold substrate. Folic acid (FA) was covalently bonded onto SWNTs surface to specifically recognize cancer cells according to the high affinity of FA for folate receptor (FR) on cellular surface. The developed cytosensor presented high sensitivity and selectivity for the detection of human cervical carcinoma (HeLa) cell. By using fast-response differential pulse voltammetry (DPV) method, a wide detection range from 10 to 106cells/mL with a detection limit as low as 10cells/mL was reached even in the presence of a large amount of non-cancerous cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.