Abstract

We reported on a new amperometric sensor for the sensitive and selective determination of iodate in table salt. The iodate sensor was constructed by the integration of a novel nanocomposite which was made from 9,10-phenanthrenequinone(PQ) and graphene(GP) with a glassy carbon electrode(GCE). The synthesized graphene and the nanocomposite were well characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy. We fully studied the electrochemical behavior and kinetic characteristics of the PQ/GP nanocomposite at GCE. The PQ/GP electrode shows a good electrochemical catalytic activity towards the reduction of iodate, which makes itself a sensitive and selective electrochemical sensor for iodate. The iodate sensor displays a high sensitivity(1.04 μA·μmol·L−1), a low detection limit(1.0×10−8 mol/L), a rapid response(less than 2 s), and a broad linear range(from 5.0×10−8 mol/L to 6.0×10−3 mol/L). In addition, the sensor is interference free. The practical application of the proposed sensor was tested by the detection of iodate in table salt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.