Abstract

Accurately evaluating the aging state of oil paper insulation in electrical equipment is a key to ensure the safe operation of the power transformer. For achieving highly sensitive in-situ detection of dissolved furfural in transformer oil with good reproducibility, flower-like silver nanoparticles modified with carbon nanotubes (CNTs@Ag-F-AgNPs) was synthesized by a combination of electroless silver plating and redox method. The large specific surface area and strong adsorption capacity of CNTs@Ag promoted the formation of more “hot spots”. CNTs@Ag-F-AgNPs were adsorbed on Si-Au substrate via mercapto groups on the coupling agent 1′4 phenyldimercaptan molecule (BDT). Using rhodamine 6G (R6G) as probe molecule, the enhanced factor reached 6.96 × 109. Then, the substrate was used for in-situ SERS detection of transformer oil-dissolved furfural at different concentrations and the detection limit was 2.25 mg/L at 1703 cm−1 (Stretching vibration of C = O in furfural molecule), fulfilling requirements of furfural content detection after severe aging of transformer (4 mg/L). Besides, the relative standard deviation (RSD) of characteristic peak intensity at ten different positions was only 1.74%. These results exhibite that three-dimensional nanostructure with high sensitivity and good reproducibility exhibited a wide application range for in situ detection of dissolved trace furfural in transformer oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call