Abstract

Individualized therapy involves genetic test of drug metabolism, which provides information about the initial dose and therapeutic drug monitoring for adjusting the subsequent dose. Consequently, toxic side effects are expected to be minimized and therapeutic effects to be maximized. In this study, an ultra-performance liquid chromatography tandem mass spectrometry method that was specific, accurate and sensitive was developed to simultaneously determine azathioprine two metabolites, 6-thioguanine nucleotides (6-TGN) and 6-methyl-mercaptopurine riboside (6-MMPr) in the whole blood lysate. We precipitated the sample by trifluoroacetic acid under the protection of dithiothreitol, with 6-MMPr and 6-TGN being hydrolyzed to produce 6-methymercaptopurine and 6-thioguanine. In the chromatographic separation, Waters ACQUITY BEH C18 (2.1 × 100 mm, 1.7 μm) chromatographic column was applied and gradient elution was conducted with 0.02 mol/L ammonium acetate buffer (which contains 0.3% formic acid) and acetonitrile at a flow rate of 0.4 ml/min. Tandem mass spectrometry in multiple reaction monitoring mode was applied for detection via electrospray ionization source in positive ionization mode. The analyzing process lasted for no more than 2 min. The calibration curve for each metabolite fitted a least squares model (weighed 1/X) from 1.25 to 5000 ng/ml (r2 > 0.99). The ion pairs were detected as 6-MMP m/z 167.07 → 152.15, 6-TG m/z 168.06 → 134.13, and internal standard m/z 171.07 → 137.14. Under the guidance of FDA guidelines for bioanalytical method validation, we carried out validation and obtained satisfactory results. The method was successfully utilized for monitoring the concentrations of each metabolite from 65 affected patients who had received azathioprine maintenance therapy and achieved optimal results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.