Abstract

A simple, low-cost technique for fabrication of high performance optical fiber oxygen sensor is described. An organically modified silicate (ORMOSIL) as a matrix for the fabrication of oxygen sensing film was produced. The technique is based on coating the end of an optical fiber with ORMOSIL composite xerogel films film sequestered with luminophore platinum (II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) prepared by a sol–gel process. The composite xerogels studied are 3,3,3-trifluoropropyltrimethoxysliane (TFP-TriMOS) or n-propyltrimethoxysilane ( n-propyl-TriMOS)/tetraethylorthosilane (TEOS)/ n-octyltriethoxysilane (Octyl-triEOS). Results show that, expect for PtTFPP-doped TFP-TriMOS or n-propyl-TriMOS/TEOS/Octyl-triEOS composite xerogels show the high sensitivity and linear Stern–Volmer relationship which indicate the homogenous environment of the luminophore. The sensitivities of the two oxygen sensors are quantified in terms of the ratio I N2/ I O2, where I N2 and I O2 represent the detected fluorescence intensities in pure nitrogen and pure oxygen environments, respectively. The experimental results reveal that the PtTFPP-doped TFP-TriMOS/TEOS/Octyl-triEOS and n-propyl-TriMOS/TEOS/Octyl-triEOS oxygen sensors have sensitivities of 101 and 155, respectively. The experimental results confirm that the current oxygen sensors exhibit the linear Stern–Volmer plots and high-sensitive based on the oxygen indicator embedded in TFP-TriMOS or n-propyl-TriMOS/TEOS/Octyl-triEOS composite xerogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call