Abstract

Bismuthine was on-line trapped on tungsten coil and subsequently electrothermally vaporized for the determination by atomic fluorescence spectrometry (AFS). Several noble metals, including Pd, Rh, Pt, and Ir, were explored as permanent chemical modifier for tungsten coil on-line trapping. Investigation showed that Ir gave the best performance, in which bismuthine was on-line trapped on Ir-coated tungsten coil at 560 °C, and then released at 1550 °C for subsequent transfer to AFS by a mixture of Ar and H 2. Under optimum instrumental conditions, the trapping efficiency was found to be 73 ± 3%. With 120 s (12 mL sample volume) trapping time, a limit of detection (LOD) of 4 ng L − 1 was obtained, compared to conventional hydride generation AFS (0.09 μg L − 1 ); the LOD can be lowered down to 1 ng L − 1 by increasing the trapping time to 480 s. The LOD was found to be better or at least comparable to literature levels involving on-line trapping and some other sophisticated instrumental methods such as ICP-MS and GF-AAS. A comprehensive interference study involving conventional hydride-forming elements and some transition metals was carried out, and the result showed that the gas phase interference from other hydride-forming elements was largely reduced, thanks to the use of on-line tungsten coil trapping. Finally, the proposed method was applied to the determination of bismuth in several biological and environmental standard reference materials, and a t-test shows that the analytical results by the proposed method have no significant difference from the certified values at the confidence level of 95%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call