Abstract

Identifying ultra-trace amounts of divalent lead ions (Pb2+) with high response and selectivity, continues to be a pressing issue in identifying environmental pollutants and preventing health complications. This paper details how the in-situ electrodeposited Zn/Cu-BTC-NH2 metal-organic frameworks (MOFs) boosts Pb2+ concentration for amino adsorption and facilitates ion transfer between Cu element and Pb2+. The modified coating of the glassy carbon electrode (GCE) exhibits a unique nano-reticulated structure loaded with octahedron particles, the nano-reticulated structure ensures the structural strength of the modified electrode layer, while the loaded octahedral particles enhancing electrocatalytic activity. The ultra-trace detection of Pb2+ at concentrations below μg·L−1 is accomplished by using the square wave anodic stripping voltammetry (SWASV) method, the fabricated Zn/Cu-BTC-NH2 modified electrode signifies a detection threshold of 0.021 μg L−1 and a clearly ascending linear interval prior to the rise in Pb2+ concentration to 120 μg L−1. The reported electrochemical method for the precise identification of Pb2+ in water-based solutions offers a practical approach for modifying MOFs materials and detecting heavy metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.