Abstract

A highly sensitive and selective glutamate biosensor using glutamate Oxidase (GlUtOx) immobilized platinum nanoparticle (PtNP) decorated multiwall carbon nanotube (MWCNTs)/polypyrrole (PPy) composite on glassy carbon electrodes (GC) is demonstrated. PtNP decorated MWCNTs (Pt-MWCNTs), PPy and Pt-MWCNTs/PPy composite were characterized by Field Emission Scanning Electron Microscope (FESEM), X-ray diffraction (XRD) and Raman analysis to confirm the formation of the nanocomposite. The glutamate Oxidase (GlUtOx) was immobilized on a GC/Pt-MWCNTs/PPy and characterized by the cyclic voltammetry (CV) and impedance spectroscopy (EIS) analysis. The fabricated L-glutamate biosensor exhibited high sensitivity (723.08 µA cm−2 mM−1) with less response time (3 s) with a detection limit of 0.88 µM. The dynamic range from 10 to 100 µM with a correlation coefficient (R2) of 0.985 was observed for the L-glutamate biosensor. The analytical recovery of added L-glutamate acid (50 and 100 μM) in human serum soup were 96.1% and 97.5% respectively. The enzyme immobilized GC/Pt-MWCNTs/PPy/GlUtOx bioelectrode lost 12.6% and 23.8% of its initial activity after 30 days when stored at − 20 °C and 4 °C respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.