Abstract
In this paper we report the development of a highly sensitive amperometric glycerol biosensor based on alcohol dehydrogenase from Pseudomonas putida immobilized on graphite electrode modified with carbon nanotubes and a redox mediator tetrathiafulvalene. The designed biosensor demonstrates very high sensitivity towards glycerol (29.2 ± 0.9 µA mM–1 cm–2), low limit of detection (18 µM), linear range from 0.05 to 1.0 mM, high selectivity and satisfactory stability. Biosensor has been successfully used for the determination of glycerol concentration in buffer solutions as well as in the human urine samples. Received results shows a satisfactory agreement with the control measurements carried out using colorimetric commercially available glycerol determination assay kit, thus developed biosensor can be successfully applied for measurements of glycerol concentration in human urine and may be a fast, attractive and non-invasive tool for the determination of glycerol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Talanta
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.