Abstract

In this study, a series of undoped and Eu-doped SnO2 nanofibers were synthesized via a simple electrospinning technique and subsequent calcination treatment. Field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were carefully used to characterize the morphologies, structures and chemical compositions of these samples. The results reveal that the as-prepared nanofibers are composed of crystallite grains with an average size of about 10nm and Eu3+ ions are successfully doped into the SnO2 lattice. Compared with pure SnO2 nanofibers, Eu-doped SnO2 nanofibers demonstrate significantly enhanced sensing characteristics (e.g., large response value, short response/recovery time and outstanding selectivity) toward acetone vapor, especially, the optimal sensor based on 2mol% Eu-doped SnO2 nanofibers shows the highest response (32.2 for 100ppm), which is two times higher than that of the pure SnO2 sensor at an operating temperature of 280°C. In addition, the sensor exhibits a good sensitivity to acetone in sub-ppm concentrations and the detection limit could extend down to 0.3ppm, making it a potential candidate for the breath diagnosis of diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.