Abstract

To meet the rising demand of injectable hydrogels with self-healing, robustness and biocompatibility for biomedical engineering, the reversible ketoester-type acylhydrazone linkages was used for the fabrication of novel cellulose-based hydrogel. The ketoester-type acylhydrazone bond exchanged rapidly, endowing the hydrogels with highly efficient self-healing performance without any external stimuli under physiological environment, which was hardly achieved with the widely used arylhydrozone bond. The dynamic hydrogels exhibited tunable mechanical property, pH responsiveness, injectability and biocompatibility, demonstrating immense applications prospect for various biomedicines, such as drug and cell delivery. The pH-responsive controlled release of model drug doxorubicin (DOX) loaded in the hydrogel was demonstrated. In addition, benefitting from the excellent biocompatibility and the reversible ketoester-type acylhydrazone bonds, cells were encapsulated in the hydrogels as 3D carrier. The covalent adaptable network intensified injectability of cell-laden hydrogels and improved the long-lasting viability for cell culture, showing great potential in the biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.