Abstract

A wearable screen-printed electrochemical smartsensor with excellent selectivity for methanol quantification has been developed. This smartsensor consists of a printable sensing system modified with platinum (Pt) confined in a reduced graphene oxide (rGO) matrix, as well as a compact electronic interface for data collection. The real-time electrochemical signal from methanol could be remotely detected and transmitted to a smartphone by blue tooth. It performs good environmental adaptability of vapor/liquid amphibious behaviors. Owing to the uniform distribution of Pt loading on the rGO nanosheets, this sensor demonstrates high selectivity, sensitivity, stability, and recoverability both in vapor and liquid during temperature or humidity diversification, compared with other resistance-based sensors. It also achieves good bending and stretching performance, and it could be a possible candidate device for the quantification of methanol in different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.