Abstract

Unhealthy alcohol inhalation is among the top 10 causes of preventable death. However, the present alcohol sensors show poor selectivity among alcohol homologues. Herein, Pt-coated truncated octahedron Au (Ptm@Auto) as the electrocatalyst for a highly selective electrochemical sensor toward alcohol homologues has been designed. The alcohol sensor is realized by distinguishing the electro-oxidation behavior of methanol (MeOH), ethanol (EtOH), or isopropanol (2-propanol). Intermediates from alcohols are further oxidized to CO2 by Ptm@Auto, resulting in different oxidation peaks in cyclic voltammograms and successful distinction of alcohols. Ptm@Auto is then modified on wearable glove-based sensors for monitoring actual alcohol samples (MeOH fuel, vodka, and 2-propanol hand sanitizer), with good mechanical performance and repeatability. The exploration of the Ptm@Auto-based wearable alcohol sensor is expected to be suitable for environmental measurement with high selectivity for alcohol homologues or volatile organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.