Abstract

An efficient protocol for solvent-free chemoselective tetrahydropyranylation/depyranylation of alcohols and phenols is reported herein using mesoporous Phenolsulfonic Acid Formaldehyde Resins as a heterogeneous acid catalyst. The catalyst successfully performed chemoselective protection and deprotection reactions of a wide range of substrates ranging from primary to secondary and tertiary alcohols and also phenols. The reactions were carried out at ambient temperature under solvent-free condition (SolFC) which resulted in high yields within a very short time. FT-IR, TEM, SEM, EDS and TG-DSC analysis techniques were employed to characterize the synthesized polymeric catalyst. The chemoselective nature of our method was confirmed using 13C DEPT-135 NMR studies. The polymer catalyst was found to be recoverable even after 10th catalytic cycle without much depreciation in its activity. The heterogeneity of the catalyst was verified by hot filtration method. Good yield, energy and cost- effective method, solvent-free protocol, mild reaction conditions, no inert atmosphere, metal-free heterogeneous polymer catalyst and excellent recoverability of the catalyst are notable milestones of the reported protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call