Abstract

The selective transformation of glycerol into value-added products remains a challenging task due to its polyfunctional nature. Conversion of glycerol into 2,2-dimethyl-1,3-dioxolane-4-methanol (i.e., solketal) was efficiently catalyzed by SnCl2 at room temperature and in solvent-free conditions. Solketal is an useful additive for the formulation of gasoline, diesel, and biodiesel. Tin chloride, an inexpensive, water-tolerant, and minimally corrosive Lewis acid catalyst, has demonstrated excellent catalytic behavior in the acetalisation of glycerol with acetone to yield solketal with a higher efficiency than traditional Bronsted acids (i.e., p-toluenesulfonic acid or sulfuric acid). The effects of various parameters, such as catalyst loading, acetone/glycerol molar ratio, and temperature on the selectivity and conversion of glycerol was investigated in detail. Although used in the homogeneous phase, the SnCl2 catalyst was easily recovered and reused without any reactivation treatment up to six times, keep...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.