Abstract

The present study describes the synthesis of primary amines from long-chain fatty alcohols and ammonia using supported ruthenium catalysts over different acid supports, including a variety of zeolites with different topologies and Si/Al ratios. The morphology, acidity and location of ruthenium in the catalysts was studied in detail by combining XRD, BET, HR-TEM, NH3-TPD, octylamine-TPD, H2-TPR, XPS, EXAFS / XANES, 27Al MAS NMR and TGA. In particular, Ru/HBEA (Si/Al = 25) with 5 wt% Ru afforded more than 90 % conversion and 90 % selectivity to 1-octylamine in the liquid-phase amination reaction of 1-octanol with ammonia at 180 °C in a batch reactor. The high selectivity of Ru/HBEA (Si/Al = 25) can be explained by the presence of Brønsted / Lewis acid centers with medium strength in the proximity of ruthenium nanoparticles. The catalyst was further tested in a pre-pilot continuous stirred-tank reactor (2 L) with flash separation of 1-octylamine. In this configuration, a steady 92 % selectivity of octylamine was obtained at 87 % 1-octanol conversion during 120 h on steam. The catalyst kept its integrity during the reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call