Abstract

The molecular recognition of methylazacalix[4]pyridine (MACP-4; 1) towards various diols was investigated by using (1)H NMR spectroscopic and X-ray diffraction analysis. As a unique macrocyclic host molecule that undergoes conformational inversions very rapidly in solution, MACP-4 has been shown to self-regulate its conformation, through the formation of different conjugations of the four bridging nitrogen atoms with their adjacent pyridine rings, to form a cavity that best fits the guest species through intermolecular hydrogen-bond, C-H...pi, and pi-pi interactions between the host and guest. As a consequence, depending upon the diol structure and geometry, MACP-4 forms a 1:1 molecular sandwich, 2:1 molecular capsule, and 1:2 butterfly-layered complex with the guests. As a result of favorable enthalpy and entropy effects, MACP-4 exhibits excellent selectivity in the recognition of resorcinol, thus resulting in a very stable 1:1 sandwich complex with resorcinol with a binding constant of 6000 (M-1). The dynamic (1)H NMR spectroscopic study demonstrated that the 1,3-alternate conformation of the macrocyclic ring of the MACP-4resorcinol complex (13) is stable at low temperature (T<243 K), and its conformational inversion requires a larger activation energy (DeltaG++=(45.5+/-2.2) kJ mol(-1)). In the presence of an excess amount of resorcinol, however, the conformational inversion of the MACP-4resorcinol complex proceeds more readily with a decreased activation energy (DeltaG++=(33.5+/-1.5) kJ mol(-1)) owing most probably to the favorable enthalpy effect of the [3...1...3]++transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.