Abstract

The ionophore properties of four kinds of N-alkyl/aryl ammonium resorcinarenes and extended-resorcinarenes were inspected for the first time to fabricate polymeric membrane electrodes for determination of biologically relevant pyrophosphate (PPi) and lysophosphatidic acid (LPA). The proposed ion selective electrodes (ISEs) showed significant preference for PPi and LPA with significant selectivity pattern differences from the Hofmeister series. To gain further insight into the performances of the developed ISEs, the binding constants of ionophore-anion complexes in the plasticized membrane phase were investigated, along with the optimized geometries and calculated electrostatic potential. Nernstian potential responses with good reversibility to target anions can be observed when shifting the optimized membranes in aqueous solutions in the concentration range from 10-6.5 to 10-2.3/10-2.2 M. Moreover, potentiometric sensings of PPi and LPA in mineral water and artificial serum were achieved in low μM concentration range, demonstrating their promising real-world applications. These results provide a promising avenue for the development of polymeric membrane electrodes for biological relevant anions and will broaden the scope of potentiometric sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call