Abstract
The ionophore properties of four kinds of N-alkyl/aryl ammonium resorcinarenes and extended-resorcinarenes were inspected for the first time to fabricate polymeric membrane electrodes for determination of biologically relevant pyrophosphate (PPi) and lysophosphatidic acid (LPA). The proposed ion selective electrodes (ISEs) showed significant preference for PPi and LPA with significant selectivity pattern differences from the Hofmeister series. To gain further insight into the performances of the developed ISEs, the binding constants of ionophore-anion complexes in the plasticized membrane phase were investigated, along with the optimized geometries and calculated electrostatic potential. Nernstian potential responses with good reversibility to target anions can be observed when shifting the optimized membranes in aqueous solutions in the concentration range from 10-6.5 to 10-2.3/10-2.2 M. Moreover, potentiometric sensings of PPi and LPA in mineral water and artificial serum were achieved in low μM concentration range, demonstrating their promising real-world applications. These results provide a promising avenue for the development of polymeric membrane electrodes for biological relevant anions and will broaden the scope of potentiometric sensing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.