Abstract

Photocatalysis is an ecofriendly and sustainable pathway for utilizing solar energy to convert organic molecules. In this context, using solar light responsive graphene-based materials for C–N bond activation and coenzyme regeneration (nicotinamide adenine dinucleotide hydrogen; NADH) is one of the utmost important and challenging tasks in this century. Herein, we report the synthesis of nitrogen-doped graphene quantum dots (NGQDs)-eriochrome cyanine (EC) solar light active highly efficient “NGQDs@EC” composite photocatalyst for the conversion of 4-chloro benzylamine into 4-chloro benzylamine, accompanied by the regeneration of NADH from NAD+, respectively. The NGQDs@EC composite photocatalyst system is utilized in a highly efficient and stereospecific solar light responsive manner, leading to the conversion of imine (98.5%) and NADH regeneration (55%) in comparison to NGQDs. The present research work highlights the improvements in the use of NGQDs@EC composite photocatalyst for stereospecific NADH regeneration and conversion of imine under solar light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call