Abstract

Electrochemical conversion of N2 into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N2 in aqueous systems. A high NH3 synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N2 to active sites. This paper describes the introduction of electron-rich Bi0 sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 μg cm-2 h-1 at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N2 reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH2 intermediates suggest electron-rich Bi0 boosts sound activation of N2 molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call