Abstract
Purification of the C8 aromatics (xylenes and ethylbenzene) is particularly challenging because of their similar physical properties. It is also relevant because of their industrial utility. Physisorptive separation of C8 aromatics has long been suggested as an energy efficient solution but no physisorbent has yet combined high selectivity (>5) with high adsorption capacity (>50 wt %). Now a counterintuitive approach to the adsorptive separation of o-xylene from other C8 aromatics involves the study of a known nonporous layered material, [Co(bipy)2 (NCS)2 ]n (sql-1-Co-NCS), which can reversibly switch to C8 aromatics loaded phases with different switching pressures and kinetics, manifesting benchmark o-xylene selectivity (SOX/EB ≈60) and high saturation capacity (>80 wt %). Structural insight into the observed selectivity and capacity is gained by analysis of the crystal structures of C8 aromatics loaded phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.