Abstract
The mild recognition sites of oxygen atoms and phenyl rings from 5-(4-pyridyl)-methoxyl isophthalic acid (5,4-PMIA2-) moieties and tetrakis(4-pyridyloxymethylene) methane (TPOM) linkers inside the channels of a novel three-dimensional microporous metal-organic framework (MOF) [Co2(5,4-PMIA)2(TPOM)0.5]· xsolvent (1) are presumed to provide pore environments with moderate contacts toward guests, as indicated by grand canonical Monte Carlo simulations, which appear to be beneficial for adsorption and separation applications. As expected, 1 represents one of the rare examples that show both high storage capacity of C2H n and good adsorption selectivity of C2H n/CH4 and CO2/CH4 under ambient conditions, and yet, it has significantly lower energy consumption for regeneration. In addition, a validated submicro-1-based microsolid-phase extraction (μ-SPE) method for the determination of trace monohydroxylated polycyclic aromatic hydrocarbons in complex human urine was developed with satisfactory sensitivity and good precision by online coupling to liquid chromatography-mass spectrometry, which represents the first example of a mixed-ligand MOF applied as an efficient sorbent for μ-SPE.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.