Abstract
Hydrogen (H2) has gradually become a substitute for traditional energy, but its potential danger cannot be ignored. In this study, litchi-like g-C3N4/In2O3 composites were synthesized by a hydrothermal method and used to develop H2 sensors. The morphology characteristics and chemical composition of the samples were characterized to analyze the gas-sensing properties. Meanwhile, a series of sensors were tested to evaluate the gas-sensing performance. Among these sensors, the sensor based on the 3 wt% g-C3N4/In2O3 (the mass ratio of g-C3N4 to In2O3 is 3:100) showeds good response properties to H2, exhibiting fast response/recovery time and excellent selectivity to H2. The improvement in the gas-sensing performance may be related to the special morphology, the oxygen state and the g-C3N4/In2O3 heterojunction. To sum up, a sensor based on 3 wt% g-C3N4/In2O3 exhibits preeminent performance for H2 with high sensitivity, fast response, and excellent selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.