Abstract

We report on the fabrication of a new type of polymeric fluorescent Hg2+ probe covering a broad effective concentration range from nanomolar to micromolar levels and exhibiting considerably enhanced detection selectivity. Two amphiphilic diblock copolymers colabeled with Hg2+-reactive caged dye (RhBHA) and Hg2+-catalyzed caged fluorophore (HCMA) in the hydrophilic segments, PS-b-P(DMA-co-HCMA) and PS-b-P(DMA-co-RhBHA), were synthesized via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization, where PS, DMA, HCMA, and RhBHA are polystyrene, N,N-dimethylacrylamide, hydrazone-caged coumarin, and rhodamine B (RhB) derivatives, respectively. The two amphiphilic diblock copolymers can spontaneously self-assemble into mixed micelles in aqueous solution possessing hydrophobic PS cores and HCMA and RhBHA moieties colabeled hydrophilic PDMA coronas. Fluorescence emissions of caged RhBHA and HCMA moieties can effectively turn on in the presence of low and high Hg2+ concentrations via Hg2...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.