Abstract

A facile method is presented for the selective luminescence detection of trace polycyclic aromatic hydrocarbons (PAHs) based on a combination of the specific recognition of molecularly imprinted polymers (MIPs) and magnetic separation (MS). Multifunctional magnetic-luminescent MIP nanocomposites were fabricated via a one-pot emulsion strategy using polystyrene-co-methacrylic acid copolymer, hydrophobic Fe3O4 nanoparticles and luminescent LaVO4:Eu(3+) nanoparticles as building blocks with a phenanthrene template. The resulting nanocomposites can be employed in a simple method for the luminescence detection of phenanthrene. Furthermore, magnetic separation of the nanocomposites from the target mixture prior to luminescence detection of phenanthrene affords significantly enhanced selectivity and sensitivity, with a 3σ limit of detection (LOD) as low as 3.64 ng/mL. Milk samples spiked with phenanthrene (5.0 μg/mL) were assayed via this method and recoveries ranging from 97.11 to 101.9% were obtained, showing that our strategy is potentially applicable for the preconcentration, recovering, and monitoring of trace PAHs in complex mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.