Abstract

A recent alternative for replacing traditional hydrocarbons like gasoline, diesel, and natural gas, is the use of dimethyl ether (DME), which is more environmentally friendly. One of the ongoing challenges is to catalyze methanol dehydration for selectively producing the DME (2CH3OH → CH3OCH3 + H2O). It is established that the CuO catalyst over alumina performs the methanol dehydration, but the formation of by-products is the main drawback. For these reasons, we synthesized a CuO/γ–Al2O3 catalyst promoted with hematite aiming to enhance the activity toward DME at atmospheric conditions. The resulting bimetallic catalyst (CuO-Fe2O3/Al2O3) performed a 70% conversion at 290 °C, which is similar to other catalysts recently reported in the literature but done in harsh conditions. In addition, this bimetallic catalyst exhibited a 100% in selectivity toward the DME production. XPS spectra of the fresh and used catalyst suggested that the chemical oxidation states of Cu and Fe remain without change. After regenerating the catalyst at 600 °C for 2 h in air, it performed at a similar catalytic conversion, confirming the reusability of the as-synthesized material and reducing the environmental impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call