Abstract

AbstractCopper is the third most abundant essential transition metal ion in the human body. It's responsible for important activities in many living things, but excessive intake of Cu2+ can lead to a range of diseases. A colorimetric and turn‐off fluorescent probe (E)‐2‐(5‐(benzothiazol‐2‐yl)‐2‐(diethylamino)‐4‐hydroxybenzylidene)‐N‐phenylhydrazine‐1‐carbothioamide (ZTR) was designed and synthesized by thiosemicarbazone Schiff base as a specific complexes site strategy to achieve highly specific Cu2+ detection. The fluorescence of the probe ZTR solution fell dramatically when Cu2+ was added, and its appearance changed from dazzling blue to nearly colorless. The simple structure and readily available fluorescent probe provide a novel approach for the quantitative detection of Cu2+ in the linear range from 0 to 0.12 μM, with a detection limit down to 16 nM, and with high selectivity for Cu2+ over 15 other metal ions. Job’s plot analysis showed that probe ZTR and Cu2+ formed a 1:1 coordination complex. In addition, because of its low detection limits and fast response time, the created fluorescent molecule was effectively used to study the target ions on test paper strips and in water samples.))

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.