Abstract
AbstractPotassium ion channels specifically transport K+ ions over Na+ ions across a cell membrane. A queue of four binding sites in the K+ channel pore plays significant roles during highly selective conduction. A kind of aromatic helical oligomer was synthesized that can selectively bind K+ over Na+. By aromatic stacking of helical oligomers, a type of artificial K+ channels with contiguous K+ binding sites was constructed. Such artificial channels exhibited exceptionally high K+/Na+ selectivity ratios during transmembrane ion conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.