Abstract
Xylene is a harmful and hazardous volatile organic compound (VOC) indoors, thus selective and sensitive detection for subppm-level xylene is crucial, however a remained challenge. In this work, p-NiO/p-NiCr2O4 nanocomposites were successfully synthesized through a simple hydrothermal route and used as sensing materials. In the comparative gas sensing test, the sensor fabricated from NiO/NiCr2O4 (Cr/Ni = 25 at%) nanocomposite exhibited the highest response (66.2–100 ppm) to xylene, which was 37.2 times higher than that of the pure NiO sensor. Moreover, the NiO/NiCr2O4 nanocomposite gas sensor showed not only superior xylene selectivity with low cross-responses to interfering gases such as ethanol (Sxylene/Sethanol = 11.8) and acetone (Sxylene/Sacetone = 10.2) but also ppb-level detection limit (1.2–50 ppb xylene) at 225 °C. The synergistic catalytic effect between NiO and NiCr2O4, optimized structural parameters and marked resistive variation due to the formation of nanoscale p-p heterojunctions were regarded as the main reasons for the ultrasensitive and selective xylene detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.