Abstract

A colorimetric assay based on an enzyme-inhibition strategy is promising for the on-site detection of pesticide residues. However, very few works of pesticide detection were reported based on the inhibition toward nanozymes although nanozymes have demonstrated many advantages in sensing various targets. Herein, a facile colorimetric detection for Glyp was developed based on β-CD@DNA-CuNCs enzyme mimics. The β-CD@DNA-CuNCs with high peroxidase-like activity was synthesized using random DNA double strands as template and β-CD as surface ligand. β-CD@DNA-CuNCs could catalyze the H2O2-3,3′,5,5′-tetramethylbenzidine (TMB) system. The oxidation product OxTMB with a blue color and presented a large absorption signal at 652 nm. However, Glyp could destroy the synergic effect between redox doublet (Cu2+/Cu+) on the β-CD@DNA-CuNCs surface, resulting in the inhibition of the peroxidase-like activity. Colorimetric detection for Glyp could be established by detecting the changes of absorption signal at 652 nm. The linear range was 0.02–2 μg/mL and the detection limit was 0.85 ng/mL (3δ/s). The method was applied in measuring Glyp spiked in lake water and various food samples. This method had rapidness, high sensitivity, and selectivity advantages, indicating the high application potential in monitoring Glyp residue in food.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.