Abstract

Electric power can be generated from renewable energy sources such as solar and wind, making electrocatalytic hydrogenation an important technology to reduce carbon dioxide emissions in the organic synthesis industry. In the present work, the electrocatalytic semihydrogenation of diphenylacetylene was carried out in a proton exchange membrane (PEM) reactor with carbon-supported Pt, Pd, and Pt–Pd alloy cathode catalysts. Diphenylacetylene introduced into the PEM reactor at less negative potentials underwent electrocatalytic hydrogenation to provide cis-stilbene as a main stereoisomer, with excellent current efficiencies. Among the investigated catalysts, the Pt–Pd alloy with a composition of 1(Pt):99(Pd) was found to be the most suitable for achieving both high cis-stilbene selectivity and a high production rate (partial current density) for cis-stilbene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.