Abstract
Hair analysis has been increasingly used to establish long-term biomarkers of exposure to both endogenous and exogenous substances, with a special emphasis on steroidal hormones. Hair cortisol and cortisone have been associated to physiological and psychological strains, anxiety and depression. Hair is a very complex matrix, which might jeopardize analyte detection at low concentrations. A new, highly selective and sensitive method based on fragments of second order, MS3 (MS/MS/MS), was developed and validated for the analysis of hair cortisol and cortisone. An online solid phase extraction was performed on a C8 restricted access material (RAM) phase following by separation on a reversed-phase C18 column using methanol and 0.02% ammonium hydroxide as mobile phase. The developed method required minimal sample preparation and the injection of only 50µL of sample leading to a LOQ of 2pgmg−1. Good linear responses were observed in the range 2–200pgmg−1 (R2>0.99) and extraction recoveries ranged between 77–125% and 70–123% for cortisol and cortisone, respectively. Intra- and inter-assay coefficients of variation were between 1.4 and 14%. In order to evaluate the applicability of the method, preliminary tests (N=33) were conducted in 3cm hair samples (close to scalp) of healthy volunteers with an age range of 4–63. Average concentrations in hair were 12.7±14pgmg−1 and 41.6±42pgmg−1 for cortisol and cortisone, respectively. Further investigations on cortisol and cortisone as biomarkers for chronic psychological strain will be assessed as a next step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.