Abstract

Abstract Ternary Au/Fe2O3-ZnO gas-sensing materials were synthesized by combining co-precipitation and microwave irradiation process. The as-prepared Au/Fe2O3-ZnO was characterized with X-ray diffractometer and scanning electron microscope, and its gas-sensing performance was measured using a gas-sensor analysis system. The results show that the as-prepared products consist of hexagonal wurtzite ZnO, face-centered cubic gold nanoparticles and orthorhombic Fe2O3 crystallines. The Au/Fe2O3-ZnO based sensor has a very high selectivity to ethanol and acetone, and also has high sensitivity (154) at a low working temperature (270 °C) and an extremely fast response (1 s) against acetone. It is found that the selectivity can be adjusted by Fe2O3 content added in the ternary materials. It possesses a worth looking forward prospect to practical applications in acetone detecting and administrating field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call